
www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6484-6492, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 1

 ISSN 2395-1621

CORBA Based Distributed Framework

for GPGPU Processing

Shamim Akhter, Tawsif F. Rahman, Md. Rakib Bahadur, Monirul Islam,

Yasser Khan, Shantanu Kumar Rahut

shamimakhter@gmail.com,

shantanurahut@gmail.com

Department of Computer Science and Engineering, International University of Business, Agriculture and

Technology, Dhaka, Bangladesh

Department of Computer Science and Engineering, East-West University (EWU), Dhaka, Bangladesh.

ABSTRACT

ARTICLE INFO

GPU based systems are in demand due to their massively parallel architecture with

thousands of cores to handle multiple tasks simultaneously and improve the application

performance dramatically. However, GPU based system implementation requires

specific hardware and software supports, and thus it is costlier compared to common

machines. To solve this problem, the Common Object Request Broker Architecture

(CORBA) based distributed framework can be implemented. In this paper, we are

proposing and implementing a language and platform-independent distributed

framework, which enables GPGPU processing as a service from a remote host to

common CPU, enable clients. Besides, the adaptive merged sort is taken as an example

application and implemented on GPU based parallel system with a novel approach.

Keywords: GPGPU, CORBA, Distributed Framework, Adaptive Merge Sort

Article History

Received:23
rd

December 2020

Received in revised form :

23
rd

December 2020

Accepted: 29
th

December 2020

Published online :

6
th

January 2021

I. INTRODUCTION

Compute and process a humongous amount of data set in

minimal time is always an attraction to the programmers.

Recently, performance improvement by reducing time is

one of the major research domains. In this regard, parallel

applications including -Abinit [1], Accelereyes Arrayfire[2],

Acceleware AxRecon[3], etc are implemented over the

Graphics Processing Unit (GPU)[4] and the number is

growing. The term GPU was arrived by NVIDIA in 1999,

and it was presented as a "single-chip processor with

integrated transform, lighting, triangle setup/clipping, and

rendering engines". Compute general computational work

using GPU is known as GPGPU (General-purpose GPU).

Today's GPU is an integral part of a graphics card and has

hundreds of cores that can execute multiple numbers of

instructions in parallel. Their performance is also far greater

than modern CPUs with 4 or 8 cores. However, GPU based

system (GPU enable graphics card) needs specific H/W and

S/W supports including OS version, RAM size, Bandwidth,

CPU types, etc., to do GPGPU processing. The additional

cost is another issue for such system implementation. Let's

take an example of a parallel computing lab with several

workstations and installed different OSs, H/Ws, and S/Ws.

Thus, implementing the GPU enables graphics card may

require changing/replacing the available H/W and S/W

settings. This may also include additional costs. An

alternative to this situation is to implement a distributed

framework where two/three workstations (hosts) can be able

to do GPGPU processing and the rest can work as a client to

request GPGPU servicing from host PCs. It can support to

reduce the additional cost as well as provide an

infrastructure (GPU based system) as a service to GPU

unable devices.

Thus, In this work, we are proposing a platform-

independent distributed framework that enables GPGPU

processing as a service from a remote host to common CPU

enable clients. The framework is also implemented by a

Java-based CORBA language implementation. CORBA

supports language independence and mobility (platform

independence). Common Unified Device Architecture

(CUDA) based parallel programming API is chosen at hosts

to support the GPGPU processing. Besides, we choose a

novel application-adaptive merge sort [5][6] which has not

yet been implemented in a parallel system. A new parallel

adaptive merge sort algorithm is designed especially for

GPU-based systems and the performance improvement is

tested on the proposed distributed framework.

The remainder of the work is organized as follows:

Section II introduces the background study and state-of-

the-art technologies. Section III gives tools, application,

and implementation details. Section IV shows the results

and performance analysis of GPU-based parallel

applications. Finally, the concluding remarks are presented

in the conclusion section.

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6484-6492, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 2

II. BACKGROUND STUDY

A distributed system is implemented with some

interconnected (communicate and/or coordinate)

independent computers within a communication network. It

is organized through the middleware that runs on all

machines but offers a uniform interface to the system.

Middleware is a kind of software that serves to connect

separate and already existing programs or software

components. Enterprise applications and web services [7]

are examples of such software components. Different

middlewares are available for different applications to

include- Remote Procedure Call (RPC), Remote Method

Invocation (RMI), Common Object Request Broker

(CORBA), Distributed Common Object Model (DCOM),

etc. CORBA is a software standard that is defined and

maintained by the Object Management Group (OMG). It is

an architecture and specification that creates, distributes,

and manages distributed program objects in a network. It

also allows programs at different locations and developed

by different vendors can communicate in the network.

A. CORBA System Architecture

CORBA (Common Object Request Broker Architecture)

automates many common network programming tasks

including object configuration (registration, location, and

activation), requests and responses handling (request

demultiplexing, parameter marshaling and unmarshalling,

stream serializing, operation dispatching), error handling

(framing and error detecting and recovering), etc. Fig. 1

presents the CORBA architecture, including client and

server communication over IIOP protocol.

In Fig.1, the CORBA architecture includes the Interface

Description Language (IDL) language and the platform-

independent ORB (Object Request Broker) interface. ORB

offers a useful approach for deploying open, distributed,

heterogeneous computing solutions to support transparent

communication(request-response) between all connected

objects located locally or remotely. IIOP (Internet Inter-

ORB Protocol) is an ORB transport protocol that enables

network objects from multiple compatible ORBs to

communicate transparently over TCP/IP. CORBA can

establish secure communications channels between clients

and object services by allowing a high-level security

framework including the authentication and access control

of remote users and services, etc.

Fig 1. CORBA Architecture

B. GPU Based System Architecture

GPU multiprocessors are worked as co-processors. When

the CPU invokes a kernel call for GPU that kernel call

executes in parallel several times in GPUs cores. For an

instance, the number of tasks a GPU can execute in parallel

depends on its architecture including the number of SM

(stream multiprocessors) and cores per SM called stream

processor (SP), and memory (registers, global, shared). Each

SM is allotted with an equal number of cores/streaming

processors (SPs). Upon receiving a kernel call or an

execution command from the CPU, the GPU SMs are

awakened and distributed with an equalized workload of

"responsibilities" which are referred to as "kernel". Each

kernel is structured with several BLOCKS and several

THREADS. SPs are only capable to handle threads. GPU

kernel is distributed into SMs, the SMs would distribute all

the instructions residing in the kernel to all available SPs.

Under every multiprocessor, there is a large number of

32-bit registers. Register memory is the fastest memory

among all other memories in the GPU system. Each thread

will be assigned to a set of registers and uses them for

fetching and storing data/instructions. Shared memory is

comparatively slower than registers but sharable between

threads in a block. Because it resides in a chip, it has a

higher bandwidth than global or local memory. It can be

compared to an L1 cache in a regular CPU. It shares a 64k

memory segment per SM. Global memory resides on the

device but off-chip from the multiprocessors. Because of

that access to global memory is much costlier than accessing

shared memory. All threads from any SMs can access global

memory. Local memory is the private memory for each

thread execution. Local memory is also off-chip and resides

on the device. These memories are allocated to the thread

when kernel execution needs more memory than registers to

hold the thread's local data. Constant memory is accessed

like cached. Each multiprocessor cached an amount of

constant memory (64k), so that repeated reading from

constant memory will be faster.

Fig. 2 shows the architecture of NVIDIA GeForce GTX

650. NVIDIA provides GPU massive parallelism platform

named CUDA (Compute Unified Device Architecture).

CUDA supports a heterogeneous programming model-

where the kernel threads execute at the device and

implement with CUDA enable APIs and rest of the program

run at CPU in C language. CUDA programming also

maintains two separate memory spaces (DRAMs), one is

CPU memory and the other is device memory. Therefore, a

CUDA program manages the global, constant, and shared

memory spaces visible to kernels through built-in API calls

including device memory allocation and deallocation as well

as data transfer between CPU and device memory.

Fig 2. NVIDIA GeForce GTX 650 Architecture

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6484-6492, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 3

C. Implementation of SMs and SPs using BLOCKS and

THREADS

The CUDA programming model maintains two (2)

separate memory spaces in DRAM including host memory

(utilized by the CPU) and device memory (utilized by the

GPU). Host codes execute serially on CPU and the device

functions that means kernels execute on GPU. Therefore, a

program manages the global, constant, and texture memory

spaces (host variables) visible to kernels through calls to the

CUDA runtime. This includes device memory allocation

and deallocation as well as data transfer between host and

device memory.

#define gridsize 5

#define blocksize 1024

__global__ void adder(int *d_a,int *d_b,int *d_c)

{

 int a = blockDim.x * blockIdx.x + threadIdx.x;

 d_c[a] = d_a[a] + d_b[a];

}

int main()

{

 adder << <gridsize, blocksize >> >(d_a, d_b, d_c);

}

The function(adder) labeled with __global__ type is the

function that is invoked by the serial code for executing in

GPU. The instructions written inside the function are

exactly the instructions executed in each thread. The

blocksize stands for the number of threads allocated in each

block, and the grid size stands for the number of blocks are

allocated during the program execution. Thus, GPU will

enumerate and create 5 blocks each accommodating 1024

threads in a logical partition of GPU for the above kernel

function. Once the enumeration is done blocks would be

thrown to SMs to execute. Now some restrictions are

imposed on the device. Users are bound to declare the size

of the block equal or lesser than the number of threads a

single SM is capable to accommodate. In our GTX 650

device, the maximum 1024 number of threads an SM can

manage with its 192 SPs.

All user-defined numbers of threads are first allocated

into a block and the blocks are then superimposed on the

SMs. In the GTX 650 device, there are only two SMs. Each

SM would first allocate two 1024/512/256/128/64 sized

blocks in them. The SM would then calculate how many

threads are available within him to complete 1024 threads.

Those rest are allocated to another block. Thus, one SM

would be able to execute 1 (1024/1024), 2(1024/512),

4(1024/256), 8 (1024/128), and 16 (1024/64) block(s)

consecutively. Thus, in GTX 650, for 5 grid size and 1024

blocksize will execute three (3) iterations and consecutively

execute 2x1024 threads in one iteration. If one iteration

takes 3.2 microseconds, then the full code execution takes

9.6 microseconds.

Each kernel execution takes the same amount of time due

to thread and block-level parallelism rather depending on

the number of data to be executed. Let's find out the effect

of block size and grid size in execution time. The

experiment in Fig. 3 proofs that a single block takes almost

the same amount of time regardless of the number of data or

threads are taken into consideration. The initial downtrend

of the graph might play a little role of counterproof but on

average the time taken to execute each of the blocks keeps a

relatively static flow.

Fig 3. Time graph for Grid size: 1 & Blocksize: 32 to

1024

D. Related Works

Many real-time distributed systems are designed and

implemented on the CORBA framework in [8] [9] [10] [11]

and [12]. Heterogeneous computing systems provide an

opportunity to dramatically increase the performance of

parallel and High-Performance Computing (HPC)

applications on clusters with CPU and GPU architectures.

GPUs are used to speed up many scientific computations;

however, to use several networked GPUs concurrently, the

programmer must explicitly partition work and transmit data

between devices. Message Passing Interface (MPI) works

through the message passing paradigm between scalable

clusters [13]. However, it is unable to transfer data between

CPU and GPU. OpenMP [14] works on a shared memory

multiprocessing system but unable to scale beyond 200

nodes due to threads management overhead and cache

coherence H/W requirements. OpenCL [15] a standard

programming model is jointly developed by Apple, Intel,

AMD, and NVIDIA. It supports parallelism and efficient

data delivery between parallel processors. However, it uses

lower-level programming constructs. Common Unified

Device Architecture (CUDA) [24] supports straightforward

APIs to manage devices, memory, etc, and higher scalability

with low-overhead thread management, easy

communication between CPU and GPU, or vice versa. Thus,

the CUDA programming API is suitable for hosts to support

GPGPU processing.

DistCL[16] framework distributes the execution of

OpenCL kernels across a GPU cluster. Many GPUs Package

(MGP) [17] is running OpenMP, C++, and unmodified

OpenCL applications on clusters with many GPU devices

and reduce the complexity of programming and running

parallel applications on the clusters-based system. DistCL

and MGP work successfully in an integrated, centralized,

homogeneous cluster computers system only. Recently

major cloud providers, such as Microsoft Azure, Amazon

Web Services, and IBM SoftLayer have announced

partnerships with Nvidia to provide on-demand GPU cloud

computing [18]. Still, they are in the developing phase. Thus,

service-oriented and distributed GPGPU processing is in

demand. Remote Method Invocation (RMI)[19], Common

Object Request Broker Architecture (CORBA)[20][21],

Simple Object Access Protocol (SOAP)[22], Remote

Procedure Call (RPC)[23][24][25] and etc. are the available

middleware to create distributed frameworks. Besides,

CORBA supports language independence and mobility

(platform independence) and its java-based implementation

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6484-6492, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 4

can be a good choice for a distributed framework to provide

GPGPU processing service.

Merge sort is one of the most efficient sorting algorithms

and works on the principle of Divide and Conquer. Adaptive

Merge sort is a modified merge sort [5] and reduces the

layer of merging. However, our adaptive merge sort has not

yet been implemented in parallel. Thus, in this paper the

application we choose our proposed adaptive merge short

with a new design of implementation for GPGPU based

processing.

III. TOOLS AND APPLICATION

The GPU device (used for the experiments) is designed

by Kepler architecture and uses a GK107 chip. The Device

has a clock rate of 1124 MHz No. of multiprocessors (SM)

is 2 with 192 cores in each. The warp size of the device is

32. The CPU specifications are Intel(R) Core (TM) i5-3470

CPU, 3.20GHz (4 CPUs), 3.2GHz, 8192 MB RAM, and

Page File is 6004 MB.

A. Application 1: Matrix Multiplication

To multiply two matrices, the condition that must be

followed is: 'Number of columns in the 1st matrix must be

equal with the number of rows in the 2nd matrix'. The

dimension of the result matrix will be (column of the 1st

matrix × row of the 2nd matrix). That means if we take two

matrices A[2][3] & B[3][4] and multiply then the result

matrix will be C[2][4]. See Fig. 4 for a better

understanding.

Fig 4. Matrix Multiplication

The equation to calculate the value of each position of C

is:

C0,0= A0,0 × B0,0 + A0,1 × B1,0 + A0,2 × B2,0

 or, C1,2= A1,0 × B0,2 + A1,1 × B1,2 + A1,2 × B2,2

Serial implementation

In serial application the program determines every value

in result array one at a time. We can describe the code

snippet as follows:

for i = 0 to < row of 1st matrix

 begin

 for j = 0 to < column of 2nd matrix

 begin

 for k = 0 to < row of 2nd matrix

 begin

 sum = sum + matrix1[i][k] *matrix2[k][j];

 end

 result¬_matrix[i][j] = sum;

 sum = 0;

 end

 end

This part calculates the value of each position of the

result matrix. As we can see to calculate the result matrix it

needs 24 times to calculate the value of the sum according

to the example given above. It may seem very little number

to a beginner level programmer and also took a tiny period

to execute on the modern processor, but when we multiply

matrices with hundreds/thousands of rows and columns then

the time cost will be visible to us. We present some data of

time to calculate to multiply two matrices in Table 1. To

avoid complexity, we are using square matrices (matrix with

the same height and width). We can reduce the computation

time by implementing it in parallel GPU architecture.

Parallel implementation

 Before understanding the parallel application let's

recall the concept of two-dimensional thread and block at

first. We already know that every thread has a given ID

known as threadIDx starts from 0 at every new block. To

know the position of a thread from the beginning of the first

block we can use the following equation:

Position_of_thread = blockIDx × blockDim + threadIDx

 Here, blockIDx is the block ID that contains several

active threads, blockDim is the total number of threads in a

block and threadIDx is ID of the active thread.

Therefore, the idea is, the value of every position of the

result matrix will be calculated by different threads in

parallel. That means, the value of C0,0 will be calculated on

threadIDx(0,0) and C1,2 on thradIDx(1,2), whether they

belong to the same or different block. Which is completely

dependent upon the value of blockDim defined by the

programmer at the beginning of the program. So, the Kernel

function will be like:

__global__ void MatMulKernel(Matrix A, Matrix B,

Matrix C)

{

 // Each thread computes one element of C

 // by accumulating results into Cvalue

float Cvalue = 0.0;

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

if(row > A.height || col > B.width) return;

for (int e = 0; e < A.width; ++e)

Cvalue += A[row][col+e] * B[row+e] [col];

 C.elements[row][col] = Cvalue;

}

B. Application 2: Adaptive Merge Sort

Adaptive merge sort is an improved version of the

famous merge sort algorithm based on the "divide and

conquer" method. Where merge sort has a time complexity

of O(nlog2(n)) for the best-case scenario, the adaptive

merge sort has the time complexity of O(n). For the worst-

case scenario, both the merge sort and the adaptive merge

sort has the time complexity of O(nlog2(m)) where m<=n/2.

Adaptive merge sort gives the programmers an efficient way

of sorting. Also, it can perform even better if coupled with

parallelism.

Data sets of random numbers have some natural orders or

sequences. Even in the worst-case situation (the most

disordered) at least two elements sitting alongside each

other have an ordered sequence, either increasing or

decreasing. For performing the adaptive merge sort, at first,

we find that natural ordered sequence(s) and mark them

using a flag based on ascending or descending order, which

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6484-6492, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 5

means divide the data into smaller sub-list or node. After

that, every consecutive pair of one merge and create a new

node in sorted order. After creating smaller sub-lists or

nodes, the sorting process can be implemented in serial or in

parallel.

Serial Implementation

For every merge operation, two types of nodes are

needed- high_node and low_node, and it occurs between

two consecutive pairs of nodes. For example, node 0 with

node 1 or node 4 with node 5. One-time merge loop

operation between two consecutive nodes from 0 to N is

termed as – total merge. The total merge occurs log2N times

for serial implementation.

Parallel Implementation

Parallel implementation differs from serial

implementation in one key aspect, two (2) procedures from

serial implementation are executed in parallel:

• Conversion of sublists (descending nodes to ascending):

For serial implementation, every node needs to be checked

and converted from descending order to ascending order

once per iteration. The worst-case complexity for this

procedure is O(N/2). In parallel implementation, all nodes

are checked by different threads and executed in parallel.

The proposed parallel implementation can check

1024x2x2=4096 nodes in a single time instant. Thus,

complexity will be reduced to O (1).

• Merging the converted sublists: This part works in

parallel thus transform into a kernel function and executes in

GPU. For parallel execution, a CUDA program was created

to do the conversion procedure of the sublists. The

following kernel will execute in GPU and will work with 5

threads.

__global__ void merge_myway_ascend(int *d_num, int

*d_start_ind, int *d_end_ind, int *d_as_ds, int *swapper)

And invoking kernel function in main

merge_myway_ascend <<<1, nonodes >>>(d_num,

d_start_ind, d_end_ind, d_as_ds, swapper);

An example data set with 17, 51, 64, 94, 17, 17, 18, 0, 1,

2, 4, 5, 14, 15, 18, 0, 5, 17, 18, 64 has taken to show the

steps of parallel implementation. Conversion algorithm first

implements and Fig. 5 presents the sub lists D= (Node 0-

Node 4)=5.

Fig 5. Nodes after conversion

Merging procedure calls the merge kernel, with the

following parametes- Height =⌈〖log〗_2 (D)⌉ = 3, Size of

data (N) = 20 and Aproxnode size = ∑(size[i]*freq[i]) / ∑

freq[i] = 4. After invoking merge kernel following

operations are carried out in each thread execution. For

finding new position for any data we follow the equation

stated below:

New position = start_ind[low] + (fetched index -

start_ind[high]) + (index of itself in main dataset -

start_ind[low])

Where,

start_ind[low] = starting index of the low node.

fetched index = the index in the high node where the data

should probably be at.

start_ind[high] = starting index of the high node.

index of itself in the main dataset is equal the index of the

data in consideration in the original dataset.

Below, calculations are shown the merging procedure for

Node0 and Node1. Thus low=0 and high=1. This is called

first level merging and presented in Fig. 6(i) to Fig. 6(vii).

Thread 0 is responsible to find the position of Data [0] in

the result merging array. To do that thread0 reads the

starting index of Node0 (start_ind[low] is 0, low=0) and the

starting index of Node1 (start_ind[high] is 4, high=1).

Node0[data index] = 17 will check in Node1 list from

starting index (4) to end sequentially to find a bigger

number than 17, and when finds return the Node1 index

(fetched index). In our case which is 6. So, New position of

17 = start_ind[low] + (fetched index - start_ind[high]) +

(index of itself in main dataset - start_ind[low]) = 0 + (6 - 4)

+ (0 - 0) = 2. Fig. 6(i) puts 17 into its right position.

Fig 6(i). New position of 17 from low_node

Simultaneously thread 1 executes and responsible to find

the position of Data [1] in the result merging array. To do

that thread1 reads the starting index of Node0 (start_ind[low]

is 0, low=0) and the starting index of Node1 (start_ind[high]

is 4, high=1). Node0[data index] = 51 will check in Node1

list from starting index (4) to end sequentially to find a

bigger number than 51, and when finds return the Node1

index (fetched index). In our case which is none. Thus,

fetched index = end index of Node1+1; So, New position of

51 = start_ind[low] + (fetched index - start_ind[high]) +

(index of itself in main dataset - start_ind[low]) = 0 + (7 - 4)

+ (1 - 0) = 4. Fig. 6(ii) puts 51 into its right

position.

 Fig 6(ii): New position of 51 from low_node

Simultaneously thread 2 executes similar way and find

new position for Data[2]. New position of 64 (Data[2]) =

start_ind[low] + (fetched index - start_ind[high]) + (index of

itself in main dataset - start_ind[low]) = 0 + (7 - 4) + (2 - 0)

= 5. Fig. 6(iii) puts 64 into its right

position.

 Fig 6(iii). New position of 64 from low_node

Simultaneously thread 3 executes similar way and find

new position for Data[3]. New position of 94 (Data[3]) =

start_ind[low] + (fetched index - start_ind[high]) + (index of

itself in main dataset - start_ind[low]) = 0 + (7 - 4) + (3 - 0)

= 6. Fig. 6(iv) puts 94 into its right

position.

 Fig 6(iv). New position of 94 from low_node

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6484-6492, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 6

Similarly, threads 4, 5, and 6 execute and find new

positions for Data[4], Data[5], and Data[6]. However, they

do not need to compare for finding a bigger value from them.

Directly their index is used to find their new position.

New position of 17 (Data[4]) = start_ind[low] + (fetched

index - start_ind[high]) + (index of itself in main dataset -

start_ind[low]) = 0 + (0 - 4) + (4 - 0) = 0. Fig. 6(v) puts 17

into its right position.

Fig 6(v). New position of 17 from high_node

New position of 17(Data[5]) = start_ind[low] + (fetched

index - start_ind[high]) + (index of itself in main dataset -

start_ind[low]) = 0 + (0 - 4) + (5 - 0) = 1. Fig. 6(vi) puts 17

into its right position.

Fig 6(vi). New position of another 17 from high_node

New position of 18 (Data[6]) = start_ind[low] + (fetched

index - start_ind[high]) + (index of itself in main dataset -

start_ind[low]) = 0 + (1 - 4) + (6 - 0) = 3. Fig. 6(vii) puts 18

into its right position.

Fig 6(vii). New position of 18 from high_node

Fig. 7 shows the result after completion of the first level

merging.

Fig 7. Data set with Start and end INDEX of nodes after the

1
st
 level of merging

And the process described earlier for the first level

merging will also continue until the final result is achieved.

Fig. 8 shows the result after second-level merging and Fig.

10 shows the final sorted list after final merging. The total

number of the level needed is the Height value, which is = 3

here.

Fig 8. Data set with Start and end INDEX of nodes after the

2nd level of

merging

Fig 9. Main data set and Start and end INDEX of the node

after final level merging

Fig 10. CalcServer is the server code initialized at port 1050.

Fig 11. Client console.

Fig 12. Output of a complete CUDA program of adding two

layers

IV. EXPERIMENTS AND RESULTS

A. CORBA Based Client-Server Implementation

CORBD (Object request broker daemon) is used to

enable clients to transparently locate and invoke persistent

objects on servers in the CORBA environment. Our

CORBA-based server (CalcServer) is implemented in IP

169.254.88.102 and port 1050, see Fig. 10.

The client uses port no. and IP address in the command

line are used to establish a connection with the server. After

successful connection server asks the client to choose one of

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6484-6492, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 7

the given options as services given in Fig. 11. The client

chooses the appropriate service as a number. Thereafter, the

server-side code can perform the specific service including

ADD, SUB, Run Exe (Adaptive Merge Sort), etc. For

running Adaptive Merge Sort in CUDA based GPGPU

processing Run Exe option needs to choose. Fig. 12 shows

an example running environment of a complete CUDA

program that adds two(2) arrays of 4096 integers and the

operation uses GPU cores and takes a screenshot of the

outputs and saves in on server computer.

B. Experiment on Application1: Matrix Multiplication

At first, we implement the Matrix Multiplication

application in the server with serial implementation, and the

CPU execution time (in a sec) is noted in Table I. Later, we

experiment on the Matrix Multiplication application in

GPGPU based server. We already mentioned that the kernel

code is the part of CUDA code that is executed by GPU

processors. Thus, to visualize the effect of GPU-based

implementation, we experiment and test the Matrix

Multiplication application's kernel execution time by

increasing matrix size and block size (number of threads).

Results are presented in Fig. 13. It highlights a noticeable

decrement of time on the same size matrix calculation

between parallel implementations with different block sizes.

A question can arise here, why is there no difference in

execution time between 32 to 4 block sizes for 200 size

square matrix multiplications but have a huge difference in

1000 size square matrix multiplication?

The answer to the question depends on the GPU

architecture. As our GPU is limited to use 2SMs and 1024

threads in each SM. Thus, it restricts us to use the highest

1024x2 threads and 64k local memory to store block data

inside an SM. 32,16,8 and 4 block sizes restrict 64,128,256

and 512 corresponding blocks into 2SMs and 32, 16, 8, and

4 corresponding threads execution for solving a block of

operations in parallel. 32, 16, 8, and 4 block sizes allow per-

thread operation same thus should provide the same time to

complete the execution. However, SM internal memory size

creates constraints. All block data should be copied into

internal SM memory at a single time. When block data

crosses the size of the internal memory then left the exceed

block to execute in the next phase, which repeats block copy

and thread execution and increases overall execution time.

Thus, 200 size square matrix multiplication requires

200x200=40,000 results. Thus, 40,000 threads can execute

parallel and solve the problem nearly a similar amount of

time for the block sizes. However, increasing the data size

creates a larger data size for a block and demands a larger

memory size. Next level copy time adds much more

execution time and creates larger gaps between different

block sizes executions.

TABLE I

AVERAGE EXECUTION TIME OF MATRIX MULTIPLICATION

SERIAL IMPLEMENTATION

Size of the Square Matrices (S)

 (A[S][S] & B[S][S])

Time (sec)

200 0.037

400 0.408

600 1.555

800 5.469

1000 13.658

Fig 13. Kernel execution time (µs) vs. matrix size based on

various Block Sizes

C. Experiment on Application2: Adaptive Merge Sort

Parallel Adaptive Merge sort requires both CPU and GPU

hybrid implementation. Serial parts implement in the CPU

and parallel parts implement in GPU in this experiment.

Thus, we consider only merging portion to compare the

performance of Adaptive Merge sort implementation in

CPU and GPU as merging procedure implements in GPU

only for parallel version and CPU for the serial version. Fig.

14 depicts a comparison in execution time of merging

procedure for various amounts of data using CPU and GPU.

We can see the difference in performance for completing an

adaptive merge sort on a large number of data using CPU

and GPU. Parallel implantation using GPU wins the

comparison by a large gap with the serial implementation

using CPU. For 13312 data, our proposed parallel

implementation works about 6.89% faster than the serial

implementation when the block size is 1024 and grid size 1.

Fig. 15 depicts the comparison between the execution time

of serial implementation by CPU and proposed parallel

implementation by GPU for an optimum block size of 128.

We see a significant rise in performance by our proposed

parallel implementation using the CORBA framework for

the block size of 128; about 7.65% faster than serial

implementation using CPU only.

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6484-6492, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 8

0.023636

0.029439

0.038158

0.06062

0.072206

0.072

0.149

0.248

0.327

0.498

5120

7168

9216

11264

13312

CPU vs GPU execution time
(Lower is Better)

CPU GPU

Fig 14. Comparison between the execution time of serial

implementation using CPU and proposed parallel

implementation using GPU (blocksize 1024)

Fig 15. Comparison between the execution time of serial

implementation using CPU and proposed parallel

implementation using GPU (blocksize 128)

V. CONCLUSION

Matrix multiplication is a specific type of application

where the appeal of CUDA shines. To avoid multifaceted

iterations that might prove to be a huge deal of time

consumption, it is a good idea to implement GPU

parallelism rather than relying upon the CPU's serial

implementations. We avoid memory transfer time as it does

not serve the purpose of our pursuit and leave for future

work. Similar results are also highlighted in adaptive merge

sort. Besides, the CORBA framework based parallel

implementation for adaptive merge sort yielded the best

result in every possible scenario. With optimum blocksize,

CORBA framework based parallel implementation is found

out to be about 7.65% faster than the serial implementation.

Thus two different applications are implemented on GPGPU

through the proposed CORBA-based distributed framework.

Their successful implementation and performance highlight

the workability of our proposed framework.

REFRENCES

[1] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F.
Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas,
M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M.

Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F.
Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.
Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-or futureM.
Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.
Verstraete, G. Zerah, and J. Zwanziger, "ABINIT: First-
principles approach to material and nanosystem properties,"
Computer Physics Communications, vol. 180, no. 12, pp.
2582–2615, 2009. DOI: 10.1016/j.cpc.2009.07.007

[2] "AxRecon Image Reconstruction Solution," Scientific
Computing World, 07-Jul-2016. [Online]. Available:
https://www.scientific-computing.com/press-
releases/axrecon-image-reconstruction-solution. [Accessed:
02-May-2020].

[3] "About ArrayFire," ArrayFire. [Online]. Available:
http://arrayfire.org/docs/index.htm. [Accessed: 29-Apr-
2020].

[4] "NVIDIA Launches the World's First Graphics
Processing Unit: GeForce 256," NVIDIA. [Online].
Available:https://www.nvidia.com/object/IO_20020111_54
24.html. [Accessed: 02-May-2020].

[5] S. Akhter and M. T. Hasan, "Sorting N-Elements Using
Natural Order: A New Adaptive Sorting Approach," Journal
of Computer Science, vol. 6, no. 2, pp. 163–167, Jan. 2010.
DOI: 10.3844/jcssp.2010.163.167

[6] V. Estivill-Castro and D. Wood, "A survey of adaptive
sorting algorithms," ACM Computing Surveys, vol. 24, no.
4, pp. 441–476, Jan. 1992. DOI: 10.1145/146370.146381

[7] "Web Services Glossary," Web Services Glossary.
[Online]. Available: https://www.w3.org/TR/2004/NOTE-
ws-gloss-20040211/#webservice. [Accessed: 02-May-
2020].

[8] Y.K. Cho, B.P. Zeigler, H.S. Sarjoughian, Design and
implementation of distributed real-time DEVS/CORBA,
IEEE International Conference on System, Man, and
Cybernetics, Tucson, Arizona October 7-10, 2001. DOI:
10.1109/ICSMC.2001.971989

[9] B. Thuraisingham, P. Kortmann, R. Johnson, G. Cooper,
L. Dipippo, and V. Fay-Wolfe, "Real-time CORBA," IEEE
Transactions on Parallel and Distributed Systems, vol. 11,
no. 10, pp. 1073–1089, 2000. DOI: 10.1109/71.888646

[10] C. O'Ryan, D. C. Schmidt, and J. R. Noseworthy.
Patterns and performance of a corba event service for large-
scale distributed interactive simulations. In International
Journal of Computer System s Science and engineering,
2001

[11] D. A. Karr, C. Rodrigues, Y. Krishnamurthy, I. Pyarali
and D. C. Schmidt, "Application of the QuO quality-of-
service framework to a distributed video application,"
Proceedings 3rd International Symposium on Distributed
Objects and Applications, Rome, Italy, 2001, pp. 299-308,
DOI: 10.1109/DOA.2001.954095.

[12] C. Oryan, D. C. Schmidt, F. Kuhns, M. Spivak, J.
Parsons, I. Pyarali, and D. L. Levine, "Evaluating policies
and mechanisms to support distributed real-time
applications with CORBA," Concurrency and Computation:
Practice and Experience, vol. 13, no. 7, pp. 507–541, 2001.
DOI: 10.1002/cpe.558.

[13] J. Bruck, D. Dolev, C.-T. Ho, M.-C. Roşu, and R.
Strong, "Efficient Message Passing Interface (MPI) for
Parallel Computing on Clusters of Workstations," Journal of
Parallel and Distributed Computing, vol. 40, no. 1, pp. 19–
34, 1997. DOI: 10.1006/jpdc.1996.1267.

[14] A. Basumallik, S.-J. Min, and R. Eigenmann,
"Programming Distributed Memory Sytems Using
OpenMP," 2007 IEEE International Parallel and Distributed
Processing Symposium, 2007. DOI:
10.1109/IPDPS.2007.370397.

www.ierjournal.org International Engineering Research Journal (IERJ), Volume 3 Issue 4 Page 6484-6492, 2020 ISSN 2395-1621

© 2020, IERJ All Rights Reserved Page 9

[15] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry, and D.
Schaa, "Introduction to OpenCL," Heterogeneous
Computing with OpenCL, pp. 15–39, 2012.

[16] T. Diop, S. Gurfinkel, J. Anderson and N. E. Jerger,
"DistCL: A Framework for the Distributed Execution of
OpenCL Kernels," 2013 IEEE 21st International
Symposium on Modelling, Analysis and Simulation of
Computer and Telecommunication Systems, San Francisco,
CA, 2013, pp. 556-566, doi: 10.1109/MASCOTS.2013.77.

[17] A. Barak, T. Ben-Nun, E. Levy and A. Shiloh, "A
package for OpenCL based heterogeneous computing on
clusters with many GPU devices," 2010 IEEE International
Conference On Cluster Computing Workshops and Posters
(CLUSTER WORKSHOPS), Heraklion, Crete, 2010, pp. 1-
7, doi: 10.1109/CLUSTERWKSP.2010.5613086.

[18] A. Abramovici, "GPU Cloud Computing is now a
Reality," stratoscale.com. [Online]. Available:
http://www.stratoscale.com/blog/compute/gpu-cloud-
computing-reality/. [Accessed: 02-May-2020].

[19] "Java Remote Method Invocation - Distributed
Computing for Java," Java Remote Method Invocation -
Distributed Computing for Java. [Online]. Available:
https://www.oracle.com/technetwork/java/javase/tech/index
-jsp-138781.html. [Accessed: 29-Apr-2020].

[20] "About the CORBA Embedded Specification Version
1.0," About the CORBA Embedded Specification Version
1.0. [Online]. Available:
https://www.omg.org/spec/CORBAe/1.0. [Accessed: 29-
Apr-2020].

[21] K. P. Birman, "CORBA: The Common Object Request
Broker Architecture," Guide to Reliable Distributed Systems
Texts in Computer Science, pp. 249–269, 2012. DOI:
10.1007/978-1-4471-2416-0_7

[22] "SOAP (Simple Object Access Protocol),"
Encyclopedia of Genetics, Genomics, Proteomics and
Informatics, pp. 1837–1837, 2008. DOI: 10.1007/978-1-
4020-6754-9_15821

[23] "Remote Procedure Call," The JR Programming
Language The International Series in Engineering and
Computer Science, pp. 91–105. DOI: 10.1007/1-4020-8086-
7_8

[24] A. D. Birrell and B. J. Nelson, "Implementing Remote
procedure calls," ACM SIGOPS Operating Systems
Review, vol. 17, no. 5, p. 3, 1983. DOI:
10.1145/773379.806609

[25] S. Wilbur and B. Bacarisse, "Building distributed
systems with remote procedure call," Software Engineering
Journal, vol. 2, no. 5, p. 148, 1987. DOI:
10.1049/sej.1987.0020

[26] O. Green, R. Mccoll and D.bader, "GPU merge path: a
GPU merging algorithm", 26th International Conference on
Supercomputing, Servolo Island, Venice, Italy, 2012. DOI:
10.1145/2304576.2304621

